Applications of Chebyshev Polynomials in Numerical Computation

A thesis Submitted in Partial fulfillment of the Requirements for the degree of
M.Sc. in mathematics

Prepared By:
Azkar Abdelrahim Mohieldeen Abdelrahim

Supervisor:
Dr. Mohsin Hassan Abdullah

Feb, 2018
قال تعالى:

(وَقَلَّ رَبِّ أَنْخِلْنِي مُدْخَلَ صِدْقٍ وَأَخْرِجْنِي مُخْرَجَ صِدْقٍ وَاجْعَلْ لَيِّ مِنْ لَذُنُكَ سُلْطَانًا نَصِيرًا)

صدق الله العظيم
سورة الإسراء الآية (80)
Dedication

To my Parents and Family
Who love and support me.
And
To my teachers and friends
Who enriched my knowledge.
Acknowledgment

First of all I thank Allah for all the blessings I have day by day. I would like to thank Dr. Mohsin Hassan for his supporting and providing necessary guidance concerning project implementation. Without his superior knowledge and experience, the project wouldn’t like in quality of outcomes, and thus his support has been essential.

Nevertheless, I express my gratitude toward my families and colleagues for their kind co-operation and encouragement which help me in the completion of this project.
Abstract

This study is concerned with Chebyshev polynomials and their applications in numerical computation. The basic properties of the first kind Chebyshev polynomials in the interval [-1, 1], are used extensively. Three different applications of the first kind Chebyshev polynomials are studied. First, a sufficient condition for convergence of Chebyshev semi-iterative methods applied to the numerical solution of algebraic linear systems is proved. The convergence condition depends on the bounds on the eigenvalues of a square matrix. Second, the problem of approximating a given function by Chebyshev polynomials is considered. The approximating polynomials are used to predict the value of the function at Chebyshev zeros “roots”. Third, the Gauss - Chebyshev quadrature method for the numerical integration of a given function over a finite range is applied. It consists essentially of expanding the integral in a series of Chebyshev polynomials.
List of Contents

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>الاستهلال</td>
<td>Dedication</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>List of Contents</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>VII</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>VIII</td>
</tr>
<tr>
<td></td>
<td>List of Symbols</td>
<td>IX</td>
</tr>
</tbody>
</table>

Chapter One: Introduction ... 1

1.1 Overview ... 1
1.2 Problem statement ... 1
1.3 Objectives ... 1
1.4 Methodology ... 2
1.5 Thesis Organization .. 2

Chapter Two: Literature Review ... 3

2.1 Chebyshev polynomials ... 3
 2.1.1 Chebyshev polynomials of the first kind 4
 2.1.2 Chebyshev polynomials of the second kind 4
 2.1.3 Chebyshev polynomials of the third kind 4
 2.1.4 Chebyshev polynomials of the forth kind 5
 2.1.5 Connections between the four kinds of polynomials 5
 2.1.6 Shifted Chebyshev Polynomials 7
 2.1.7 Chebyshev Polynomials for general \([a, b]\) 8
2.2 Basic properties of the first kind Chebyshev polynomials 8
 2.2.1 Chebyshev Polynomials zeros and extrema 9
 2.2.2 Orthogonality of Chebyshev Polynomials 10
 2.2.2.1 Continuous Orthogonality 10
2.2.2.2 Discrete Orthogonality ... 12
2.2.3 Chebyshev Series ... 13
2.2.4 The minimax Property of the Chebyshev Polynomials 14
2.2.5 Monic Polynomial ... 15

Chapter Three: Chebyshev semi-iterative method 16
3.1 Iterative Method .. 16
3.2 Convergence of linear nonstationary iterative methods 17
3.3 Chebyshev semi-iterative method .. 17
3.4 The algorithm of Chebyshev semi-iterative method 22
3.5 Implementation using Matlab .. 24

Chapter Four: Polynomials Interpolation ... 32
4.1 The concept of Interpolation ... 32
4.2 Polynomial Interpolation Theory ... 32
4.3 The Error in Polynomial Interpolation ... 34
4.4 Chebyshev Interpolation Formulas ... 34
4.5 Interpolation at the Chebyshev points ... 35
4.6 The algorithm of interpolation polynomials 37
4.7 Implementation using Matlab .. 40

Chapter Five: Numerical Integration using Chebyshev Polynomials 47
5.1 Numerical Integration ... 47
5.2 Definite integration .. 47
5.2.1 Quadrature method of Clenshaw – Curtis type 48
5.2.1 Gauss- Chebyshev quadrature ... 49
5.3 The algorithm of Gauss – Chebyshev quadrature 51
5.4 Implementation using Matlab .. 53

Chapter six: Conclusions .. 58
6.1 Conclusions ... 58
References .. 59
List of Tables

Table (3.1): The solution of the linear system $Ax = b$ for ten iterations25
Table (3.2): The solution of the linear system $Ax = b$ for eight iterations27
Table (3.3): The solution of the linear system $Ax = b$ for eight iterations29
Table (3.4): The solution of the linear system $Ax = b$ for eight iterations31

Table (4.1): Interpolating polynomials for approximating the function $f(x) = \sin(\pi x)$.. 41
Table (4.2): Interpolating polynomials for approximating function $f(x) = e^x$43
Table (4.3): Interpolating polynomials for approximating function $f(x) = 5e^x - x - 1$.. 44
Table (4.4): The error between the interpolating polynomials and the function $f(x) = 5e^x - x - 1$.. 44
Table (4.5): Interpolating polynomials for approximating function $f(x) = \ln(x + 2)$... 46

Table (5.1): Gauss Chebyshev quadrature integration of $f(x) = x^4$ at n=454
Table (5.2): Gauss Chebyshev quadrature integration at $n \leq 14$55
Table (5.3): Gauss Chebyshev quadrature integration at n=556
Table (5.4): Gauss Chebyshev quadrature integration at n=657
List of Figures

Figure (2.1): plot of Chebyshev polynomials $T_n, n = 0, 1,, 6$ 9
List of Symbols

\(T_n \) Chebyshev polynomials of the first kind
\(U_n \) Chebyshev polynomials of the second kind
\(V_n \) Chebyshev polynomials of the third kind
\(W_n \) Chebyshev polynomials of the forth kind
\(T_n^* \) Shifted Chebyshev polynomials of the first kind
\(x_k \) The zeros of Chebyshev polynomials
\(w(x) \) The weight function
\(\langle T_i, T_j \rangle \) The inner product of Chebyshev polynomials
\(f(x) \) Continuous function in the interval \([-1, 1]\)
\(c_i \) The coefficient of Chebyshev polynomials
\(P_n \) Interpolating polynomial of degree \(n \)
\(\rho \) The spectral radius of matrix
\(\lambda_i \) The eigenvalues of matrix
\(J_n \) Interpolating polynomial of degree \(n \)
\(L_k \) Lagrange polynomials
\(A_k \) The coefficients of Gauss – Chebyshev quadrature
\(b_j \) The coefficients of the interpolating polynomial \(J_n \)
\(d_{ij} \) Discrete orthogonality