THE ROLE OF PROPOLIS ON REPRODUCTIVE FUNCTIONS OF
SELECTIVE SEROTONINE REUPTAKE INHIBITORS (SSRIs)-INDUCED SEXUAL
DYSFUNCTION IN MALE WISTAR RATS

A Thesis
Submitted to the Department of Physiology, Faculty of
Medicine, International University of Africa, in Fulfillment of the
Requirements for the Award of Doctor of Philosophy (Ph.D.) in Physiology

By

Ayinde, Taofeek Olanrewaju
(B.Sc., MB;BS., M.Sc.)

Supervisor
Prof. Mohammad Mustapha Kardash
(MB;BS., MD., Ph.D., F.R.C.P.)

Co-supervisor
Prof. Abdulwahab Hassan Mohammad
(B,Pharm., M.Pharm., Ph.D.)

January, 2019
Dedication

This research work is dedicated to the **ALMIGHTY ALLAH, THE BENEFICENT, THE MERCIFUL, THE IMMORTAL, THE INVISIBLE, THE GIVER AND TAKER OF LIFE** who spared my life to see the completion of this programme amidst several hurdles and uncertainties. “**Alhamdulillah Rabil haalamin**”
Acknowledgements

All praise is due to the Almighty Allah, the beneficent, the merciful, who has spared my life till this moment, and made it possible for me to reach this level of my academic career. May His peace and blessings continue to be showered upon the noble soul of the Prophet, Muhammad (saw) his household, his companions and the generality of muslims.

This thesis owes its existence to the inspiration, support and love of so many people whom I am highly indebted to. I know words could be inadequate to quantify my feelings and gratitude; may the Almighty Allah continue to guide you aright, protect you and make you to be successful in all your endeavours.

I appreciate the efforts and contributions of my supervisors, Prof. Mohammad Mustapha Kardash for his constructive criticism. I similarly want to appreciate the efforts of my Co-supervisor, Prof. Abdulwahab Hassan Mohammad for his numerous pieces of advice and kindness in enriching this work. To you I say may Allah continue to assist you in all your footsteps for honouring me with your wealth of academic and life experiences. I am also very grateful to Dr. M.B. Hind for availing me her time in vetting part of this work.

My gratitudes also go to the Head of Department of Physiology, Dr. S.H. Hamidah for his support and contributions to this work, especially during my search for nitric oxide reagent, thank you sir. With deep sense of humility, I also want to appreciate Prof. Ahmad Fadhulllah for his rich technical advice, Dr. M.H. Magboulah for her support in linking me to China for possible purchase of nitric oxide. I am also very grateful to Dr. Ahmad Marhoud and Mr. Umar Abdulaziz (lab technologist) for their pieces of advice and sincere companionship during this work. I am also delighted to say a big thank you to the Dean of postgraduate studies, Prof. Omer
Ahmed Saeed, and former Dean of Students’ Affairs, Dr. Mohammad Zaed especially for their several interventions on my school fee issue.

My gratitude also goes to Mr. Basheer Tijani and Mr. Mohammad Dou for their immense contributions to this study for putting me through animal experimental protocols, dissection and organs isolation. I also want to thank Prof. Samiah of Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Khartoum and Mr. Hisam for their laboratory supports. My sincere appreciation also goes to Dr. Mohammad Hussain at the Department of Immunology, Ministry of Health Central Laboratory, Khartoum for my laboratory samples analyses. I am also very grateful to Dr. Muzamil Mahdi of the Institute of Endemic Disease, University of Khartoum for his positive research criticism in enriching this study, and Dr. Mohammad Abdulatif (Histopathologist) of Stack Lab, Khartoum. I also want to appreciate Dr. Marwan of Department of Epidemiology, International University of Africa (IUA), Dr. Mohammad Nour of Ibrahim Malik Hospital, Dr. Mubaraq and Mrs. Amnah of IUA for putting me through statistical analyses of this study. I also appreciate the contributions of my fellow postgraduate students for their immeasurable contributions.

Back home, I sincerely want to heartly appreciate the magnanimous assistance in cash and kindness of my friends, junior and senior colleagues of these various departments, Dr. K.O. Babalola (Mathematics), Prof. A.A. Musa (Surgery), Dr. L.A. Olayaki (Physiology), Prof. M.O. Bukhari (Histopathology), Dr. S.A. Biliaminu (Chem. Path), Dr. L.S. Ojulari (Physiology), Dr. A.B. Nafiu (Physiology), Prof. Ajibola Akanbi II (Med. Micro), Prof. S. Alabi (ENT), Mr. Abiodun Lawal (Bursary), all of the University of Ilorin, Ilorin, Nigeria. My warm appreciation also goes to my other friends, Alhaji Lukmon Olatubosun (Chief Imam UITH), Dr. A.M. Afodun of Department of Anatomy, Kampala International University, Dr. Mohammad Jamiu
(Histopathology, Rwanda), Dr. T.B. Akinlade (Lagos), Dr. Lawal Ibrahim (LAUTECH), Dr. Ibrahim Tajudin (IUA), Dr. Mohammad Abdulwasiu (IUA), Pharm. Sulayman Ibrahim (UITH), Mubashir Adamson (UNILORIN), Adam Abdulganiy (IUA).

In the same vein, my deepest gratitude goes to my amazing parents Alhaji Saka Omolola Ayinde and Alhaja Khadijah Onibipe Ayinde for their unflagging love, prayers, support throughout my life; you made me live the most unique Islamic life which has made me whom I am today. May Allah not put you to shame in this life and the hereafter. Allahuma Rabbir amuhuma kama Rabbayani sogiro. Also, my heartly felt appreciations go to my siblings Latifah Ayinde (Iya Ibeji), Engineer Abdulfattah Ayinde, Abdulgaffar Ayinde, Kaothar Ayinde and Engineer Habeeb Ayinde for their love and prayers. And may Allah continue to give us the course to celebrate many of this occasion for our children. I am also grateful to my auntie, Muinat (Iya Morufah) and Cousin, Morufah Alabede for transporting propolis to me in Khartoum from the USA. I similarly appreciate the effort of my late mother-in-law, Alhaja Sarah Ayodeji Dauda (Momo), whom Allah took her life at the middle of my programme. May Allah forgive you, be merciful on you and grant you paradise.

Finally, I am highly indebted to my beloved wife, sweetheart, confidant, and the apples of my eyes, Hajia Zaynab Abiola Dauda (OND; B.A.), whose unquantifiable love, emotions, prayers, patience, perseverance, submissiveness and companionship I describe as one of the greatest blessings from Allah to me. I found in you a life of intesed pleasure and satiety that every man prays for in a woman. Thank you so much Aduke for always being there for me throughout my academic pursuits in time of trials and adversities. May Allah continue to increase us in love, and make our love for Him and the Prophet (saw) be more overwhelming in our daily encounters. May He make us benefit from the sweat of our labours, and grant us success in this
life and the hereafter. I am also very appreciative of the emotions and sympathy of my lovely children, Faruq Ayinde (UNILORIN), Haneefah Ayinde and Abdullah Ayinde of Islamic College, Iorin, Khadeejah Ayinde (Mama K) and Ibraheem Ayinde (Ajide Bobo) of Excel Kiddies Academy, Ilorin, for having missed all of you during the course of this study. May Allah let you and your offsprings attain a greater height in this life and hereafter than what we celebrate today. I am also grateful to Zainab Oluwatoyin Shittu (NCE) for her immersed love, emotions and prayer contributions at the completion of this research. Thank you very much my dear, I love you. May Allah make our coming together a success for you and the entire family in this life and the hereafter. Once again to everyone remembered or inadvertently forgotten I say jazakumullah khairan.
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>Erectile dysfunction</td>
</tr>
<tr>
<td>EF</td>
<td>Ejaculation frequency</td>
</tr>
<tr>
<td>EL</td>
<td>Ejaculation latency</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>HPG</td>
<td>Hypothalamo-pituitary-gonadal axis</td>
</tr>
<tr>
<td>IF</td>
<td>Intromission frequency</td>
</tr>
<tr>
<td>IL</td>
<td>Intromission latency</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing hormone</td>
</tr>
<tr>
<td>MF</td>
<td>Mount frequency</td>
</tr>
<tr>
<td>ML</td>
<td>Mount latency</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>PDE5i</td>
<td>Phosphodiesterase-5 inhibitor</td>
</tr>
<tr>
<td>PEI</td>
<td>Post ejaculatory interval</td>
</tr>
<tr>
<td>PL</td>
<td>Propolis</td>
</tr>
<tr>
<td>PXT</td>
<td>Paroxetine</td>
</tr>
<tr>
<td>SF</td>
<td>Sildenafil</td>
</tr>
</tbody>
</table>
Abstract

Background: Several studies have found a link between medicinal plants to produce definite physiological actions in the body systems. Many products are being exhibited as "natural" sexual enhancer, but no clinical trials or scientific studies have been documented to support their effectiveness for the treatment of erectile dysfunction (ED). Out of curiosity, propolis (PL) which is a mixture collected by honey bees from parts of plants, buds, exudates, tree buds, sap flows is indeed attracting much research interests. Especially, now being locally consumed for sexual enhancement. It is estimated that up to 50-80% of patients that take selective serotonine reuptake inhibitors (SSRIs) suffer from post-SSRIs sexual dysfunction (PSSD) of one degree or another PSSD is a frustrating situation that affects the self esteem of victims. The objective of the present study was aimed at exploring and evaluating the medicinal activities of propolis using animal model with the view to justify the ethnomedicinal claim of its indigenous usage to be beneficial in improving or treating various sexual dysfunctions.

Methods: Sexually potent male Wistar rats weighing between 140g–190g, and equal number of sexually unexposed female (120g-130g) were used for this study. Sexual dysfunction was induced in the male rats by administration of paroxetine for two weeks, and confirmed by sexually exposing them to female rats. They were randomly divided into eight groups of six rats each (n=6), and were either left with the vehicle alone (0.9% NaCl), or administered sildenafil, or administered graded concentrations of PL, or co-administered sildenafil and propolis orally over two different durations of 7 days and 60 days. At the end of these days, copulatory behaviour test was done overnight to visually assess sexual indices (MF, IF, EF, ML, IL, EL and PEI) following which the animals were sacrificed for semen collection for seminal fluid analysis, and testes isolated for histological assessment. In addition, blood samples were collected from
animals administered for 60 days for biochemical analysis of LH, FSH, Testosterone and Nitric oxide.

Results: Copulatory activity on day 7 revealed that high dose propolis and sildenafil sustained all copulatory frequencies generally, except EF that was significantly (p<0.05) reduced by sildenafil citrate, while all these were decreased significantly (p<0.05) in paroxetine untreated rats. In the same vein, high dose propolis and sildenafil sustained all copulatory latencies except IL that was significantly increased, while all were significantly (p<0.05) increased in paroxetine untreated rats. The PEI was also sustained by high dose propolis and sildenafil.

Copulatory activity on day 60 showed that propolis sustained, and increased significantly (p<0.05) all copulatory frequencies. Sildenafil also sustained all the copulatory frequencies except IF which was significantly (p<0.05) decreased, while all the latencies were sustained, and significantly (p<0.05) reduced. Sildenafil however, globally significantly increase all the copulatory latencies. The PEI was also sustained by high dose propolis and sildenafil citrate.

Semen analysis on day 7 revealed a significant (p<0.05) increase in sperm count in high dose propolis administration, while there was significant (p<0.05) decrease in sildenafil and paroxetine untreated rats. The sperm motility was also sustained by high dose propolis while it was significantly (p<0.05) reduced in sildenafil and paroxetine untreated rats. The sperm total abnormality was also reduced by high dose of propolis. While sildenafil sustained the total abnormality, paroxetine untreated animals caused significant (p<0.05) reduction.

Semen analysis on day 60 showed a significant increase in sperm count in high dose propolis administered rats, while sildenafil and paroxetine untreated rats caused significant (p<0.05) sperm count reduction. Propolis also caused a sustained sperm motility, while sildenafil and paroxetine untreated rats revealed significant (p<0.05) reduction in sperm motility. The total
sperm abnormality was also significantly (p<0.05) decreased by propolis while sildenafil sustained the total sperm abnormality. However, paroxetine untreated rats led to significant (p<0.05) increase in total sperm abnormality.

The LH assay results showed that there was significant (p<0.05) increase in propolis-sildenafil combination treated rats and significant (p<0.05) reduction in other propolis administered, paroxetine untreated rats, and sildenafil treated rats when compared to control (group I). This shows that propolis-sildenafil combination has a protective role on LH being able to maintain the plasma level of LH especially at high dose. An indication that there is possibility of an interaction between propolis and Leydig cells. The FSH levels of non-induced propolis-tested rats (group II) and propolis-sildenafil combination treated rats (group VIII) exhibited significant (p<0.05) increase when compared to control group. While there was significant (p<0.05) reduction in paroxetine-induced untreated rats, all other treated groups (IV-VII) were not statistically significant (p>0.05) as compared to control. Remarkable reductions in testosterone level that were significant (p<0.05) were noticed in paroxetine-induced untreated rats (group III) and 200mg/kg propolis-treated rats (group VII). However, all other propolis-administered rats (groups II, V, VI, VIII) and sildenafil-treated rats (group IV) were not significantly (p>0.05) different from the control.

The histology generally showed I, II, VI and VII with organized seminiferous tubules and a normal spermatogenesis cycle with even distribution of every cell stage throughout the tubules and multiple germ cells, with aggregations of spermatogenic cells around the lumen with populated spermatozoa. However, III and IV revealed disorganized seminiferous tubules with large interstitial spaces.
Conclusion: Propolis has a key role to play in reproductive functions in enhancing sexual indices if given at different appropriate doses and timing in post-SSRIs sexual dysfunction, through modulation of nitric oxide and reproductive hormones.
الخلفية: وجدت العديد من الدراسات وجود صمة بين النباتات الطبية لإنتاج إجراءات فسيولوجية محددة في أنظمة الجسم. يتم عرض العديد من المنتجات كمعزز جنسي طبيعي، ولكن لم يتم توثيق أي تجارب سريرية أو دراسات علمية لدعم فعاليتها لعلاج الضعف الجنسي بدافع الفضول، دنج (PL) وهو خليط يجمعه نحل العسل من أجزاء من النباتات، البراعم، الإفرازات، براعم الأشجار، تدفقات النسغ يجلب بالفعل الكثير من الاهتمامات البحثية. خاصة الآن يجري استهلاكا محليا لتعزيز الجنسي. تشير التقديرات إلى أن ما يصل إلى 50 - 80% من المرضى الذين يعانون من ضعف جنسي ما بعد (PSSD) يتناولون من SSRI (PSSD) واحدة أو أخرى. هدفت الدراسة الحالية إلى استكشاف وتقييم الأنشطة الطبية للدنج باستخدام نموذج حيواني بهدف تبرير الادعاء العرقي من استخدامه الأصلي ليكون مفيدًا في تحسين علاج الاختلالات الجنسية المختلفة.

الطريقة: تم استخدام جرذان ويستر ذات القيمة الجنسية العالية بين 140 جرام و 190 جرام، وعدد مماثل من الإناث غير البكر جنسياً (120 جم-130 جرام) في هذه الدراسة. كان إحداث العجز الجنسي في ذكور الجرذان عن طريق إعطاء باروكستين، وتأكد من خلال تعريضهم جنسياً للأنثى الأخرى. تم تقسيمهم عشوائياً إلى ثمان مجموعات من ستة فئران كل (N = 6)، وكانت إما تركت مع السيارة وحدها أو السيدينافيل المدارة، أو تدبير ضمور متدرج من PL أو سيلدنافيل بالاشتراك والدنج شفويا خلال فترتين مختلفتين من 7 أيام و 60 يومًا. في نهاية هذه
الآيام، تم اختبار السلوك التنظيمي بين عشية وضحاها لإجراء تقييم بصري للمؤشرات الجنسية (MF, IF, EF, ML, IL, EL و PEI) والتي تم بعدا التضحية بالحيوانات من أجل جمع السائل المنوي لتحليل السوائل المنوية، واختبار الخصائص لتقييم النسيجي. بالإضافة إلى ذلك، تم جمع عينات الدم من الحيوانات التي تدار لمدة 60 يومًا للتحليل البيوكيميائي من LH، FSH، التيستوستيرون وأكسيد النيتروجين.

النتائج: كشف نشاط الاستنساخ في اليوم السابع أن جرعة عالية من البروبوليس وفياغرا حافظت على كل ترددات النوبات بشكل عام فيما عدا EF التي كانت معنوية (P<0.05) مخفضة بواسطة سترات السيلدينافيل، بينما انخفضت كل هذه بشكل ملحوظ (P<0.05) في الجرذان غير المعالجة بالباروكستين. على نفس المنوال، دنج الجرعة العالية والاستنساخية باستثناء IL التي زادت بشكل ملحوظ، في حين كانت كلها بشكل ملحوظ (P<0.05) زيادة في الجرذان غير المعالجة paroxetine. الليمي أيضاً مدعوماً بجرعة عالية من دنج وسيلدينافيل.

أظهر نشاط الاستنساخ في اليوم 60 أن دنج استمر، وزاد بشكل كبير (P<0.05)جميع ترددات الدعامة. كما عانى فياغرا جميع ترددات الاستنساخ باستثناء IF التي كانت معنوية (P<0.05) مع تأخر، وبشكل ملحوظ (P<0.05) مخفضة. ومع ذلك، فياغرا، على الصعيد العالمي، زيادة كبيرة في جميع حالات الطوارئ الاستنساخ. كما تم الحفاظ على من قبل دنج جرعة عالية وسيترات السيلدينافيل.
كشف تحليل السائل المنوي في اليوم السابع عن زيادة معنوية (P<0.05) في عدد الحيوانات المنوية في إعطاء البروبوليس بجرعات عالية، في حين كان هناك انخفاض معنوي (P<0.05) في الفئران غير المعالجة والفايروكسيد. كما تم الحفاظ على حركة الحيوانات المنوية من خلال دنج جرعة عالية، في حين كانت كبيرة والباروكسيتين غير المعالجة.

تم تخفيض الشذوذ الكلي للحيوانات المنوية أيضا عن طريق دنج جرعة عالية. في حين أن فياغرا حافظت على الشذوذ الكلي، تسبب الحيوانات غير المعالجة بالباروكسيتين في خفض كبير (P<0.05).

أظهر تحليل السائل المنوي في اليوم 60 زيادة ملموسة في عدد الحيوانات المنوية في الجرذان التي تدار بجرعات عالية من البروبوليس، في حين أن الجرذان غير المعالجة والفازورين غير المعالجة تسببت في تخفيض عدد الحيوانات المنوية (P<0.05) دنج. تسبب أيضا في حركة الحيوانات المنوية المعالجة والفايروكسيد paroxetine المعالجة، انخفض أيضا في جمالي شذوذ الحيوانات المنوية بشكل كبير بينما فياغرا حافظت على جمالي شذوذ الحيوانات المنوية. ومع ذلك، أدت الجرذان غير المعالجة بالباروكسيتين إلى زيادة معنوية (0.05<P) في إجمالي شذوذ الحيوانات المنوية. دنج في الجرعات العالية وفياغرا كانت قادرة على الحفاظ على مستويات FSH البلازما من هورمون النمو والتستوستيرون في حين كان مستوى البلازما من بشكل ملموسة (P<0.05) ومع ذلك، فإن الحيوانات غير المعالجة بالباروكسيتين على مستوى العالم خفضت مستويات البلازما من جميع الهرمونات بشكل ملموسة (P<0.05) كان مستوى البلازما من أكسيد النيتروجين أيضا بشكل ملموسة.
 región (P<0.05) زيادة من دنج جرعة عالية وفياغرا ، في حين تم تخفيض الحيوانات غير المعالجة الباروكستين بشكل كبير (P<0.05)

أظهر علم الأنسجة عموما I، II، III و VII مع الأنبوب المنوية المنظمة ودورة حياة الحيوانات المنوية العادية مع توزيع منتظم لكل مرحلة خلية في جميع أنحاء النببيات والخلايا الجرثومية المتعددة وتجمعات الخلايا المنوية حول التجويف مع الحيوانات المنوية المأهولة. ومع ذلك، كشفت الثالث والرابع النببيات المنوية غير المنظم مع مساحات بينية كبرى.

الاستنتاج: للدوبول دور رئيسي يلعبه في علم وظائف الأعضاء الإنجابية إذا تم إعطاؤه عند تناول الجرعات المناسبة المناسبة والتوقيت في الخلل الوظيفي التالي لـ SSRI من خلال تعديل أكسيد النيتريك والهرمونات التناسلية.
Table of contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td></td>
</tr>
<tr>
<td>Qur’an</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>xii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>xvi</td>
</tr>
<tr>
<td>List of tables</td>
<td>xxiii</td>
</tr>
<tr>
<td>List of figures</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

Chapter One: Introduction and Literature Review

1.1. Introduction

1.1.1. Statement of the problem

1.1.2. Aim/Broad objective of the study

1.1.3. Specific objectives of the study

1.1.4. Research hypotheses

1.1.5. Research questions

1.1.6. Significance/Benefits of the study

1.2 Literature review

16
1.2.1. Medicinal importance of honey
1.2.1.1. Honey
1.2.1.2. Bee venom
1.2.1.3. Royal jelly
1.2.1.4. Beeswax
1.2.1.5. Pollen
1.2.1.6. Propolis
1.2.1.6.1. Chemical composition and structure
1.2.1.6.2. Therapeutic properties of propolis
1.2.2. Synopsis of male reproductive structures and functions
1.2.2.1. Primary organs
1.2.2.1.1. Testis
1.2.2.2. Accessory organs of reproduction
1.2.2.2.1. Seminal vesicle
1.2.2.2.2. Prostate gland
1.2.2.2.3. Bulbourethral gland
1.2.2.2.4. Vas deferens
1.2.2.2.5. Penis
1.2.2.2.6. Epididymis
1.2.3. Spermatogenesis
1.2.3.1. Stages of spermatogenesis
1.2.3.1.1. Spermatocytogenesis
1.2.3.1.2. Spermatidogenesis
1.2.3.1.3. Spermiogenesis
1.2.3.2. Factors affecting spermatogenesis
1.2.3.2.1. Hormones
1.2.3.2.2. Temperature
1.2.3.2.3. Environment/Lifestyle
1.2.3.2.4. Nutrients
1.2.4. Male reproductive hormones
1.2.4.1. Testosterone 18
1.2.4.1.1. Production 19
1.2.4.1.2. Regulation 19
1.2.4.1.3. Functions 20
1.2.4.1.4. Mechanism of action 20
1.2.4.1.5. Distribution 21
1.2.4.2. Follicle stimulating hormone 21
1.2.4.2.1. Production 21
1.2.4.2.2. Regulation 21
1.2.4.2.3. Function 22
1.2.4.2.4. Mechanism of action 23
1.2.4.3. Luteinising hormone 23
1.2.4.3.1. Production 23
1.2.4.3.2. Regulation 23
1.2.4.3.3. Function 24
1.2.4.3.4. Mechanism of action 25
1.2.5. Nitric oxide 25
1.2.5.1. Production 25
1.2.5.2. Functions 26
1.2.5.3. Mechanism of action 26
1.2.6. Sexual behaviours 27
1.2.6.1. Characteristic mood/Activity 27
1.2.6.1.1. Libido 27
1.2.6.1.2. Orgasm 27
1.2.6.1.3. Erection 28
1.2.6.1.4. Ejaculation 31
1.2.6.2. Phases of sexual behaviours 33
1.2.6.2.1. Excitement phase 33
1.2.6.2.2. Plateau phase 34
1.2.6.2.3. Orgasm phase 34
1.2.6.2.4. Resolution phase 34
1.2.7. Pathophysiology of sexual dysfunctions 35
1.2.7.1. Hypoactive sexual desire disorder 35
1.2.7.2. Sexual arousal disorder 36
1.2.7.3. Sexual pain disorder 36
1.2.7.4. Post-orgasmic disease 36
1.2.7.5. Delayed ejaculation 36
1.2.7.6. Premature ejaculation 37
1.2.7.7. Orgasm disorder 38
1.2.7.8. Erectile dysfunction 38
1.2.7.8.1. Pathophysiology of ED 39
1.2.7.8.1.1. Classification of erectile dysfunction 40
1.2.7.8.1.1.1. Psychogenic 41
1.2.7.8.1.1.2. Neurogenic 41
1.2.7.8.1.1.3. Endocrinologic 42
1.2.7.8.1.1.4. Arteriogenic 43
1.2.8. Current management 44
1.2.9. Alternative medicine 45
1.2.10. Selective serotonine reuptake inhibitors 45

Chapter Two: Materials and Methods

2.1. Materials 46
2.1.1. Drugs and propolis 46
2.1.2. Apparatus and instruments 47
2.1.3. Diagnostic kits 48
2.1.4. Experimental animals 48
2.2. Methods 49
2.2.1. Drug preparations 49
2.2.2. Experimental design 49
2.2.2.1. Phase I (Induction of sexual dysfunction) 49
2.2.2. Phase II (Pre-treatment copulatory test) 49
2.2.2.3. Phase III (Treatment regimen) 50
2.3. Induction and synchronization of oestrus and vaginal lavage in female rats 51
2.4. First copulatory behaviour test/Sacrification of animals/
Laboratory analysis (week 1) 52
2.5. Second copulatory behaviour test/Sacrification of animals/
Laboratory analysis (week 1) 53
2.6. Animal dissection and surgical procedures 54
2.6.1. Abdomen 54
2.6.2. Testes 54
2.7. Blood sample collection and organ isolation 54
2.8. Determination of hormones and biomolecule 55
2.8.1. Determination of plasma luteinizing hormone 55
2.8.2. Determination of plasma follicle stimulating hormone 55
2.8.3. Determination of plasma testosterone 56
2.8.4. Determination of plasma levels of nitric oxide derivatives (nitrite+nitrate) 57
2.9. Seminal fluid analysis 57
2.9.1. Sperm concentration 58
2.9.2. Sperm motility 58
2.9.3. Sperm total abnormality 58
2.10. Tissue preparation for histopathology 59
2.11. Statistical analysis 59

Chapter Three: Results

3.1. Hormones 60
3.1.1. Effect of propolis on reproductive hormones in SSRIs-induced sexual dysfunction 60
3.1.1.1. Effect of propolis on luteinizing hormone in SSRIs-induced sexual dysfunction 60
3.1.1.2. Effect of propolis on follicle stimulating hormone in SSRIs-induced sexual dysfunction 60
3.1.1.3. Effect of propolis on testosterone in SSRIs-induced sexual dysfunction 61
3.2. Biomolecule
3.2.1. Effect of propolis nitric oxide in SSRIs-induced sexual dysfunction on plasma level
3.3. Copulatory behavior test (week 1)
3.3.1. Effect of propolis on copulatory frequencies in SSRIs-induced sexual dysfunction
3.3.1.1. Mount frequency
3.3.1.2. Intromission frequency
3.3.1.3. Ejaculation frequency
3.3.2. Effect of propolis on copulatory latencies in SSRIs-induced sexual dysfunction
3.3.2.1. Mount latency
3.3.2.2. Intromission latency
3.3.2.3. Ejaculation latency
3.3.2.4. Post-ejaculatory interval
3.4. Copulatory behaviour test (week 8)
3.4.1. Effect of propolis on copulatory frequencies in SSRIs-induced sexual dysfunction
3.4.1.1. Mount frequency
3.4.1.2. Intromission frequency
3.4.1.3. Ejaculation frequency
3.4.2. Effect of propolis on copulatory latencies in SSRIs-induced sexual dysfunction
3.4.2.1. Mount latency
3.4.2.2. Intromission latency
3.4.2.3. Ejaculation latency
3.4.2.4. Post-ejaculatory interval
3.5. Quality of semen (week 1)
3.5.1. Effect of propolis on sperm count in SSRIs-induced sexual dysfunction
3.5.2. Effect of propolis on sperm motility in SSRIs-induced sexual dysfunction
3.5.3. Effect of propolis on sperm abnormality SSRIs-induced sexual dysfunction
3.6. Quality of semen (week 8)
3.6.1. Effect of propolis on sperm count in SSRIs-induced sexual dysfunction
3.6.2. Effect of propolis on sperm motility in SSRIs-induced sexual dysfunction
3.6.3. Effect of propolis on sperm abnormality in SSRIs-induced sexual dysfunction
3.7. Histopathologic changes

3.7.1. Effect of propolis on histology of testes in SSRIs-induced sexual dysfunction (week 1) 77

3.7.2. Effect of propolis on histology of testes in SSRIs-induced sexual dysfunction (week 8) 81

Chapter Four: Discussion, Conclusion and Recommendations

4.1. Discussion 85

4.1.1. Propolis improved production of reproductive hormones in SSRIs-induced sexual dysfunction 85

4.1.2. Propolis improved production of nitric oxide in SSRIs-induced sexual dysfunction 87

4.1.3. Propolis enhanced copulatory behavior in SSRIs-induced sexual dysfunction 88

4.1.4. Propolis improved quality of semen in SSRIs-induced sexual dysfunction 92

4.1.5. Protective effect of propolis on cytoarchitecture of testes in SSRIs-induced sexual dysfunction 95

4.2. Conclusion 97

4.3. Recommendations 99

References 100
List of tables

<table>
<thead>
<tr>
<th>Table No</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1: Semen development during puberty</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.1: Effect of propolis on reproductive hormones in SSRIs-induced sexual dysfunction</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.2: Effect of propolis on plasma nitric oxide SSRIs-induced sexual dysfunction</td>
<td>63</td>
</tr>
<tr>
<td>Table 3.3: Effect of propolis on copulatory frequency in SSRIs-induced sexual dysfunction (week 1)</td>
<td>65</td>
</tr>
<tr>
<td>Table 3.4: Effect of propolis on copulatory latency in SSRIs-induced sexual dysfunction (week 1)</td>
<td>67</td>
</tr>
<tr>
<td>Table 3.5: Effect of propolis on copulatory frequency in SSRIs-induced sexual dysfunction (week 8)</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.6: Effect of propolis on copulatory latency in SSRIs-induced sexual dysfunction (week 8)</td>
<td>72</td>
</tr>
<tr>
<td>Table 3.7: Effect of propolis on quality of semen in SSRIs-induced sexual dysfunction (week 1)</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.8: Effect of propolis on quality of semen in SSRIs-induced sexual dysfunction (week 8)</td>
<td>76</td>
</tr>
<tr>
<td>Figure No</td>
<td>Page No</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Fig. 1.1</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>78</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>78</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>79</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>79</td>
</tr>
<tr>
<td>Fig. 3.7</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 3.8</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 3.9</td>
<td>81</td>
</tr>
<tr>
<td>Fig. 3.10</td>
<td>81</td>
</tr>
<tr>
<td>Fig. 3.11</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 3.12</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 3.13</td>
<td>83</td>
</tr>
<tr>
<td>Fig. 3.14</td>
<td>83</td>
</tr>
<tr>
<td>Fig. 3.15</td>
<td>84</td>
</tr>
<tr>
<td>Fig. 3.16</td>
<td>84</td>
</tr>
</tbody>
</table>